Untuk memperjelas dasar-dasar matematika, lapangan logika matematika dan teori himpunan dikembangkan, juga teori kategori yang masih dikembangkan. Kata majemuk "krisis dasar" mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada dasawarsa 1900-an sampai 1930-an. Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk kontroversi teori himpunan Cantor dan kontroversi Brouwer-Hilbert.
Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja aksiomatis yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi Teori ketaklengkapan kedua Gödel, mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu sistem formal yang berisi aritmetika dasar, jika suara (maksudnya semua teorema yang dapat dibuktikan adalah benar), maka tak-lengkap (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan di dalam sistem itu).
Gödel menunjukkan cara mengonstruksi, kumpulan sembarang aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam teori rekursi, teori model, dan teori pembuktian, dan terpaut dekat dengan ilmu komputer teoretis.
Matematika terapan
Matematika terapan berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam ilmu pengetahuan, bisnis, dan wilayah lainnya. Sebuah lapangan penting di dalam matematika terapan adalah statistika, yang menggunakan teori peluang sebagai alat dan membolehkan penjelasan, analisis, dan peramalan gejala di mana peluang berperan penting. Sebagian besar percobaan, survey, dan pengkajian pengamatan memerlukan statistika. (Tetapi banyak statistikawan, tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.)
Analisis numerik menyelidiki metode komputasional untuk memecahkan masalah-masalah matematika secara efisien yang biasanya terlalu lebar bagi kapasitas numerik manusia, analisis numerik melibatkan pengkajian galat pembulatan atau sumber-sumber galat lain di dalam komputasi.
Cabang-Cabang dari matematika terapan antara lain:
1. Peluang.
2. Statistika
3. Fisika Matematika
4. Kimia Matematika

0 komentar:
Post a Comment